Histopathological Assessment of Organ Impairment of *Rattus albus* Treated with Selected Medicinal Plants

Immaculata O. Uduchi a, J. C. Okolie Nnaemeka b, Ifeanyi O. C. Obiajuru c, Emmanuel Ifeanyi Obeagu b*, Cajetan E. Ilo d and Jude O. Okoye a

a Department of Medical Laboratory Science, Nnamdi Azikiwe University, Nnewi Campus, Anambra State, Nigeria.
b Department of Medical Laboratory Science, Imo State University, Owerri, Nigeria.
c Department of Medical Microbiology, Faculty of Medicine, Imo State University, Orlu Campus, Imo State, Nigeria.
d Department of Pharmacology and Therapeutics, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi Campus, Anambra State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JOCAMR/2022/v18i230349

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/86610

Received 20 February 2022
Accepted 30 April 2022
Published 13 June 2022

ABSTRACT

A histopathological assessment of organ impairment of *Rattus albus* treated with selected plant extracts: (*Napoleonaea imperialis*, *Sida acuta* and *Vernonia amygdalina*) was studied from October 2014 to March 2016. The aim of the study was to determine the histopathological effects of the plant extracts on *Rattus albus*. The *Rattus albus* were treated with 3 selected plant extracts: *Vernonia amygdalina*, *Sida acuta* and *Napoleonae imperialis* and observed for 3 weeks. A total of 22 male and 23 female laboratory animals were selected and treated with plant extracts and reference drugs. The different treatment groups and controls were selected for histopathological studies using paraffin wax embedding method. They were sacrificed and examined histopathologically for pathological features. The results showed that, all 3 selected plant extracts contain Tanins, Saponins, Alkaloids, Flavonoids, Cardiac Glycosides, Phytate, Oxalate, Phenol,
1. INTRODUCTION

The use of traditional medicine in Nigeria is as old as the people; and has remained relevant among other types of therapy. More than 50% of all modern clinical drugs are of plant origin [1]. Plant products therefore play an important role in drug development programs of the pharmaceutical industry [2]. WHO defined traditional medicine as therapeutic practices that have been in existence for hundreds of years before the development of and spread of modern scientific medicine and are still in use today [3]. Traditional medicines, based largely on herbs and trees, offer a major and accessible source of health care to people living in developing countries [4]. Commonly used medicinal plants in Nigeria include: *Napoleonea imperialis*, *Sida acuta*, *Vernonia amygdalina*.

Napoleonea imperialis P. Beauv is a Nigerian folkloic medicinal plant. It is a small, evergreen tropical West African tree in the family, Lecythidaceae [5]. The bark and the fruit pulp are chewed for this effect [6]. *Sida acuta* is an erect, perennial shrub belonging to the mallow family, Malvaceae [7]. *Sida acuta* has many traditional usage that varied from one region to another. The most cited illnesses are fever, headache, skin diseases, diarrhoea and dysentery [7]. The leaves are considered to possess demulcent, diuretic, antihelminthic and wound healing properties and are used for rheumatic affections [8].

Steroids, Terpenoids and Cyanide

Out of 4 laboratory animals in each group treated with 10 µg of crude *Napoleonea imperialis*, *Sida acuta* and *Vernonia amygdalina* extracts, no feature of impairment was observed in the intestine, kidneys and liver of all the laboratory animals used. Out of 4 laboratory animals in each group treated with 20 µg of crude *Napoleonea imperialis* extract, the intestine and liver of one each showed features of impairment. Out of 4 laboratory animals treated with 20 µg of crude *Vernonia amygdalina* extract, no impairment was observed in the intestine, kidneys and liver of all the laboratory animals used. Out of 4 laboratory animals treated with 30 µg of crude *Napoleonea imperialis* extract, the intestine of 1, the kidney of 1 and livers of 2 showed features of impairment. Out of 4 laboratory animals treated with 30 µg of crude *Sida acuta* extract, the intestine of 2, kidney of 1 and livers of 2 showed features of impairment. Out of 5 laboratory animals treated with 30 µg of crude *Vernonia amygdalina* extract, the intestine of 1, the kidneys 1 and livers of 2 showed features of impairment. Organ impairment on laboratory animals due to plant extract shows that, out of 12 animals (6 males and 6 female laboratory animals) treated with *Napoleonea imperialis* 10 (83.3%) had normal intestine and 2 (16.7%) had abnormal intestine, 11 (91.7%) had normal kidneys, 1 (8.3%) had abnormal kidney, 9 (75%) had normal liver and 3 (25%) had abnormal liver (Table 2).

Out of 12 laboratory animals (6 male and 6 female laboratory animals) treated with *Sida acuta* 9 (75%) had normal intestine and 3 (25%) had abnormal intestine, 10 (83.3%) had normal kidneys, 2 (16.7%) had abnormal kidney, 9 (75%) had normal liver and 3 (25%) had abnormal liver. Out of 13 laboratory animals (6 male and 7 female laboratory animals) treated with *Vernonia amygdalina*, 12 (92.3%) had normal intestine and 1 (7.7%) had abnormal intestine, 12 (92.3%) had normal kidneys, 1 (7.7%) had abnormal kidney, 11 (84.6%) had normal liver and 2 (15.4%) had abnormal liver.

Analysis of the data using chi square showed significant difference (p < 0.05) in the frequency of organ impairments between the different organs of the laboratory animals. The highest frequency of impairment was observed on the liver followed by intestine and the least impairment was on the kidneys. Three types of impairment: inflammatory changes, degenerative changes and distortions were observed on the intestine of the laboratory animals. On the kidneys, 5 types of impairment: lymphocytic infiltration, degenerative changes, necrosis, vacuolation, and distortion of stroma and glomerulus were observed. On the liver, 4 types of impairment: inflammatory changes, hepatocytic degenerative changes, necrosis and distortion of hepatocytes were observed. Whereas the frequency of impairment was higher in liver organs 9 (20.0%) than kidneys 4 (8.9%), the types of impairment observed were higher in kidneys than liver organs. This study has shown that *Napoleonea imperialis*, *Sida acuta* and *Vernonia amygdalina* extracts at higher concentration, exhibit pathologic effects on host organs: intestine, kidney and liver.

Keywords:

Histopathological assessment; organ impairment; *Rattus albus*; medicinal plants.
Vernonia amygdalina is a perennial herb belonging to the family, Asteraceae. V. amygdalina is commonly known as bitter leaf because of its bitter taste. Also, Ademola and Eloff, [9], reported that extracts of V. amygdalina possess in vitro anti-parasitic (anti-helminthic) properties. Thus, it is effective against amoebic dysentery, gastro-intestinal disorders and has anti-microbial and anti-parasitic activities [10,11].

Phytochemicals (biologically active compounds) such as saponins and alkaloids, terpenes, steroids, coumarins, flavonoids, phenolic acids, lignans, Xanthones, anthraquinones, edotides, and sesquiterpenes have been extracted and isolated from V. amygdalina, N. imperialis, and Sida acuta [12,13].

The use of living laboratory animals as biological agents have provided knowledge to better understanding of both physiological and pathological processes in both man and other animals [15]. However, increasing problems of development of resistance in helminths against anti-helmintics have led the proposal of screening medicinal plants for their anti-helmintic activity [14].

The use of living laboratory animals as biological agents have provided knowledge to better understanding of both physiological and pathological processes in both man and other animals [15]. The plants N. imperialis, Sida acuta and V. amygdalina have been used extensively in Igbo traditional medicine for treating intestinal discomfort. This underscores the need for Histopathological Assessment of Organ Impairment on Rattus albus treated with these Medicinal Plants.

2. MATERIALS AND METHODS

2.1 Materials

2.1.1 Study area

This study was carried out in Orlu, Imo State, South-Eastern Nigeria. Imo State shares boundary with Anambra State in the North, Rivers State in the South and West and Abia State in the East. The standard of living is average and most of the populace depend on locally prepared herbs as an alternative medicine for their ailments since they are readily available and affordable.

2.1.2 Plant materials

The medicinal plants used for this study were: Napoleonaea imperialis P.Beauv, Sida acuta and Vernonia amygdalina. Roots of Napoleonaea imperialis P.Beauv were purchased from Orie market, Umuna, Orlu. Leaves of Sida acuta and Vernonia amygdalina were collected from uncultivated farm land at Amaifeke, Orlu. The plants were identified in the Department of Plant Science and Biotechnology, Imo State University, Owerri.

2.1.3 Laboratory animals:

The laboratory animals used for this study were male and female Wistar strain of Rattus albus of 2 to 3 months old and body weights of 80 to 180g.

2.2 Methods

2.2.1 Processing of plant materials

The roots of Napoleonaea imperialis, leaves of Sida acuta and Vernonia amygdalina were dried under the shade and finally in thermostatically controlled hot air oven at 40°C until each maintained constant weight. Each was ground into fine powder using a warren blender machine and sieved using 1mm mesh sieve. The powdered plant materials were stored in labeled screw capped bottles and stored in the fume cupboard until required for extraction.

2.2.2 Extraction of active principles of the plant materials

Soxhlet Extraction: The active principles of the selected plant materials were extracted with ethanol at 78°C using soxhlet extraction method as in Harborne, [16], Obiajuru and Ozumba, [17]. The extracts were recovered and stored at +8°C in screw capped MacCarteny bottles until required for use.

Examination of Laboratory Animals: Inclusion Criteria: Healthy Rattus albus without any sign or symptom of cardiac or renal diseases were selected for the study.

Exclusion criteria: Rattus albus with heavy infection of intestinal parasites were excluded. Also those with cardiac and renal diseases markers when tested were excluded in the research.

2.3 Experimental Design

Four hundred (400) apprently healthy Laboratory animals were used for the study, 78 were
infected and 322 were not infected. The uninfected laboratory animals (322) were selected for Histopathological effects of the selected plant extracts.

The selected Laboratory animals were separated into 6 groups according to age, gender and body weight of the Albino rats.

2.4 Innoculation of Crude Extract of the Medicinal Plants

The uninfected Laboratory animals (Albino rats) were allowed to get acclimatized to the environment for a period of 4 weeks. At the end of the 4th week, crude extracts of the selected plant and reference drug solutions were prepared using physiological saline. Different concentrations of crude plant extracts were processed by 2 fold double dilutions to obtain $\frac{1}{10}$, $\frac{1}{10^2}$ and $\frac{1}{10^3}$ concentrations (W/V). The different concentrations of the plant extracts and reference drugs were administered to the laboratory animals (Albino rats) orally using automatic pipette. 0.5ml of the crude extracts and reference drugs were administered on the laboratory animals once per week for a period of three weeks.

Different colour codes were used to identify the plant extracts or reference drugs administered on the laboratory animals (Albino rats) in each treatment group.

2.5 Histological Studies

Two weeks after the 3rd dose of chemotherapy, a male and a female Albino rats were selected from each of the different treatment groups and controls. The selected Albino rats were anesthetized by placing on a wire guaze with cotton wool soaked in Diethyl ether placed below the guaze in a transparent glass dessicator. Within 34 to 57 seconds (average= 48.7secs) each of the Albino rats were sedeted to sleep. When each animal was sedated, a sterile surgical blade and scapel were used to make an incision on the mid line of the ventral surface of the rat, the liver, intestine and kidney were excised.

The liver, kidney and intestine of each animal, were dissected and placed into labelled specimen bottles containing 10% formol saline as fixative. These were used for histopathological studies.

2.6 Tissue Processing

The tissues of the laboratory animals (Albino rats) for Histopathology examination were processed and embedded in paraffin wax as described by Winsor, [18] and Kiernan, [19].

2.7 Sectionning of Laboratory Animal Tissues

Paraffin wax embedded tissue blocks were sectioned in the Histopathology Laboratory, Imo State University Teaching Hospital, Orulu, using Rotary Microtome. The microtome was set to cut sections at 4 microns. Disposable microtome blades were used. Serial sections of the various tissues were floated out on warm water bath, collected with grease – free slide and fixed on clean glass slides using warm hot plates as in Winsor, [18]; Barker, Silverton and Pallister, [20].

2.8 Staining Technique

The fixed sections of the various laboratory animal tissues used for the study were dewaxed, dehydrated and stained using routine Haematoxylin and Eosin staining technique as in Winsor, [18]; Barker, Silverton and Pallister [20] and Kiernan, [19]. The stained slides were labelled, stored in slide boxes until required for examination. The assistance of a Consultant Histopathologist at Federal Medical Centre, Owerri was sought for microscopic examination of the slides.

2.9 Microscopy and Photomicrography

Stained films of the laboratory animal tissues sections were examined microscopically using x10 eye piece and x40 objective. Reporting was done, comparing the slide observations of test samples with control groups and standard Histopathology atlas [21]. Photomicrographs of the tissues were taken using digital microscope eye piece (Leica Camera Microscope) (x400).

2.10 Statistical Analysis

The data obtained from the study were analyzed using analysis of variance (ANOVA), Chi-square and simple percentage analysis. Frequency distributions and cross tabulation to determine relationship between variables. Results were expressed as mean ± SD for some groups. A p value ≤ 0.05 was considered significant.
3. RESULTS

3.1 Pathological Features of Laboratory Animals Treated with Selected Medicinal Plants

A total of 22 male and 23 female laboratory animals were selected from the uninfected Albino rats and treated with plant extracts and reference drugs. They were sacrificed and examined histopathologically for pathological features. Table 1 shows the effects of the plant extracts on 3 organs: intestine, kidneys and liver, of the laboratory animals. As shown, out of 4 laboratory animals treated with 10 µg of crude *Napoleonea imperialis* extract, the intestine of 4 appeared normal, kidney of 4 and liver of 4 also appeared normal. No impairment was observed in their intestine, kidneys and liver. Out of 4 laboratory animals treated with 20 µg of crude *Napoleonea imperialis* extract, the intestine of 3, liver of 3 and kidneys of 4 appeared normal. The intestine of 1 and liver of 1 showed features of impairment. Out of 4 laboratory animals treated with 30 µg of crude *Napoleonea imperialis* extract, the intestine of 3, liver of 2 and kidney of 3 appeared normal. The intestine of 1, the kidney of 1 and livers of 2 showed features of impairment.

Out of 4 laboratory animals treated with 10 µg of crude *Sida acuta* extract, the intestine of 4, kidneys of 4 and liver of 4 appeared normal. No feature of impairment was observed in the intestine, kidneys and liver of all the laboratory animals used. Out of 4 laboratory animals treated with 20 µg of crude *Sida acuta* extract, the intestine of 3, kidneys of 3 and liver of 3 appeared normal. The intestine of 1, kidney of 1 and liver of 1 showed features of impairment. Out of 4 laboratory animals treated with 30 µg of crude *Sida acuta* extract, the intestine of 2, kidney of 3 and liver of 2 appeared normal. The intestine of 2, kidney of 1 and livers of 2 showed features of impairment.

Out of 4 laboratory animals treated with 10 µg of crude *Vernonia amygdalina* extract, the intestine of 4, kidneys of 4 and liver of 4 appeared normal. No impairment was observed in the intestine, kidneys and liver of all laboratory animals used. Out of 4 laboratory animals treated with 20 µg of crude *Vernonia amygdalina* extract, the intestine of 4, kidneys of 4 and liver of 4 appeared normal. No impairment was observed in the intestine, kidneys and liver of all laboratory animals used. Out of 5 laboratory animals treated with 30 µg of crude *Vernonia amygdalina* extract, the intestine of 4, kidneys of 4 and liver of 3 appeared normal. The intestine of 1, the kidneys 1 and livers of 2 showed features of impairment.

Out of 2 laboratory animals treated with Albendazole, the intestine of 2, kidneys of 2 and liver of 2 appeared normal. Out of 2 laboratory animals treated with Metronidazole, the intestine of 2, kidneys of 2 and liver of 2 appeared normal (positive control). Out of 4 negative control laboratory animals not treated with any chemotherapeutic agent, all the organs appeared normal.

3.2 Organ Impairment Due to Plant Extracts

Organ impairment on laboratory animals treated with plant extracts are summarized in table 2. As shown, out of 12 animals (6 males and 6 female laboratory animals) treated with *Napoleoneae imperialis* 10 (83.3%) had normal intestine and 2 (16.7%) had abnormal intestine, 11 (91.7%) had normal kidneys, 7 (58.3%) had abnormal kidney, 8 (66.7%) had normal liver and 3 (25%) had abnormal liver. Out of 13 laboratory animals (6 male and 7 female laboratory animals) treated with *Vernonia amygdalina*, 12 (92.3%) had normal intestine and 1 (7.7%) had abnormal intestine, 12 (92.3%) had normal kidneys, 1 (7.7%) had abnormal kidney, 11 (84.6%) had normal liver and 2 (15.4%) had abnormal liver. Analysis of the data using chi square showed significant difference (p < 0.05) in the frequency of organ impairments between the different organs of the laboratory animals. The highest frequency of impairment was observed on the intestine followed by liver and the least impairment was on the kidneys. Statistical analysis of the data, using two-way ANOVA (0.05) shows strong positive correlation between the concentration of crude plant extract and degree of organ impairment in laboratory animals. As the concentration of crude extract administered increased, the degree of impairment increases. The highest degree of impairment was observed on liver of laboratory animals treated with *Napoleoneae imperialis* and *Sida acuta*.
Table 1. Effects of plant extracts on organs of laboratory animals

<table>
<thead>
<tr>
<th>Plant Extract</th>
<th>Conc. of Extract Given (µg)</th>
<th>No of Lab. Animals treated</th>
<th>Effects of plant extracts on Lab. Animal Organs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intestine Normal</td>
<td>Abnormal</td>
</tr>
<tr>
<td>Napoleonea imperialis</td>
<td>10.0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Sida acuta</td>
<td>30.0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Vernonia amygdalina</td>
<td>30.0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Albendazole</td>
<td>20.0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Metronidazole(Positive Control)</td>
<td>30.0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Negative Control</td>
<td>10.0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>38</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(84.4)</td>
</tr>
</tbody>
</table>
Table 2. Frequency of organ impairment due to plant extracts

<table>
<thead>
<tr>
<th>Plant Extract</th>
<th>No of Animals treated</th>
<th>Lab. Impairments on Lab. Animal Organs due to plant extracts</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intestine Normal Abnormal</td>
<td>Kidney Normal Abnormal</td>
<td>Liver Normal Abnormal</td>
<td></td>
</tr>
<tr>
<td>Napoleonea imperialis</td>
<td>12</td>
<td>10 (83.3) 02 (16.7)</td>
<td>11 (91.7) 1 (8.3)</td>
<td>9 (75.0) 3 (25.0)</td>
<td></td>
</tr>
<tr>
<td>Sida acuta</td>
<td>12</td>
<td>9 (75.0) 3 (25.0)</td>
<td>10 (83.3) 2 (16.7)</td>
<td>9 (75.0) 3 (25.0)</td>
<td></td>
</tr>
<tr>
<td>Vernonia amygdalina</td>
<td>13</td>
<td>12 (92.3) 01 (7.7)</td>
<td>12 (92.3) 01 (7.7)</td>
<td>11 (84.6) 02 (15.4)</td>
<td></td>
</tr>
<tr>
<td>Albendazole</td>
<td>12</td>
<td>02 (100.0) 00 (00.0)</td>
<td>02 (100.0) 00 (00.0)</td>
<td>02 (100.0) 00 (00.0)</td>
<td></td>
</tr>
<tr>
<td>Metronidazole</td>
<td>12</td>
<td>02 (100.0) 00 (00.0)</td>
<td>02 (100.0) 00 (00.0)</td>
<td>02 (100.0) 00 (00.0)</td>
<td></td>
</tr>
<tr>
<td>Negative control</td>
<td>13</td>
<td>04 (100.0) 00 (00.0)</td>
<td>04 (100.0) 00 (00.0)</td>
<td>04 (100.0) 00 (00.0)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>38 (84.4) 07 (15.6)</td>
<td>41 (91.1) 04 (8.9)</td>
<td>36 (80.0) 09 (20.0)</td>
<td></td>
</tr>
</tbody>
</table>

\(\chi^2 = 9.735 \) (p < 0.05)

Table 3. Sex-related frequency of organ impairments due to plant extracts

<table>
<thead>
<tr>
<th>Nature of organ</th>
<th>Sex</th>
<th>No examined</th>
<th>No. of organ features (%)</th>
<th>No. of organ (s) with normal features (%)</th>
<th>No. of organ (s) with abnormal features (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestine</td>
<td>M</td>
<td>22</td>
<td>20 (90.9)</td>
<td>02 (09.1)</td>
<td></td>
</tr>
<tr>
<td>Intestine</td>
<td>F</td>
<td>23</td>
<td>18 (78.3)</td>
<td>5 (21.7)</td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td>19 (86.4)</td>
<td>03 (13.6)</td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td>16 (72.7)</td>
<td>06 (27.3)</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td>18 (78.3)</td>
<td>5 (21.7)</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td>22 (95.7)</td>
<td>01 (04.3)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\chi^2 = 8.351 \) (p < 0.05)
Table 3 shows the sex-related frequency of organ impairment in laboratory animals treated with plant extracts. As shown, out of 22 male laboratory animals treated with plant extracts, 20 (90.9%) had normal intestine and 2 (9.1%) had abnormal intestines, 19 (86.4%) had normal kidneys and 3 (13.6%) had abnormal kidneys, 16 (72.7%) had normal liver and 6 (27.3%) had abnormal liver. Out of 23 female laboratory animals treated with plant extracts, 18 (78.3%) had normal intestine and 5 (21.7%) had abnormal intestines, 22 (95.7%) had normal kidneys and 1 (4.3%) had abnormal kidneys, 20 (87.0%) had normal liver and 3 (13.0%) had abnormal liver. Analysis of the data using two-way ANOVA statistics showed strong positive correlation on the degree of impairment between male and female laboratory animals (p < 0.05). The plant extracts caused higher organ impairments (27.3%) on liver of males than liver of female laboratory animals (13.0%).

3.3 Comparative Analysis of Normal and Impaired Lab Animal Organs

The photo-micrographs of normal organs (intestine, kidneys and liver) of laboratory animals are shown in plates 1, 2 and 3, while plates 4 to 15 show the impairments caused on laboratory animal organs (intestine, kidneys and liver) by plant extracts. As shown, 3 types of impairment: inflammatory changes (plate 4), degenerative changes (plate 5) and distortion (plate 6) were observed on the intestine of the laboratory animals. On the kidneys, 5 types of impairment: lymphocytic infiltration (plate7), degenerative changes (plate 8), necrosis (plate 9) vacuolation (plate10) and distortion of stroma and glomerulus (plate 11) were observed. On the liver, 4 types of impairment: inflammatory changes (plate 12) hepatocytic degenerative changes (plate 13), necrosis (plate14) and distortion of hepatocytes (plate 15) were observed.

The nature and types of impairment caused on the different organs differ remarkably. Whereas the frequency of impairment was higher in liver organs 9 (20.0%) than kidneys 4 (8.9%), the types of impairment observed were higher in kidneys (5 types) than liver organs (4 types).

4. DISCUSSION

Traditional use of medicinal plants in the treatment of animal and human diseases is gaining global interest very fast [22]. It was in this light that the World Health Assembly, in 1989, adopted among its resolutions, the support of national traditional medicine program, drawing attention to herbal medicines as being of great importance to the health of individuals and communities [13].

Traditional medicines are used by about 60% of the world population in both developing and developed countries where modern medicines are predominantly used while an estimated 60-80% Africa’s population depends solely on herbal remedies for its primary health care needs [23].
Plate 4. Photomicrograph of the Intestine Showing Inflammatory Changes
KEY: Extract/drug administered: 20µg Sida acuta

Plate 5. Photomicrograph of the Intestine Showing Degenerative Change
KEY: Extract/drug administered: 30µg Vernonia amygdalina

Plate 6. Photomicrograph of the Intestine Showing Distortion of Intestine
KEY: Extract/drug administered: 50µg Napoleoneae imperialis

Plate 7. Photomicrograph of the Kidney Showing Lymphocytic infiltrate
KEY: Extract/drug administered: 30µg Sida acuta

Plate 8. Photomicrograph of the Kidney Showing Degenerative Changes
KEY: Extract/drug administered: 20µg Sida acuta

Plate 9. Photomicrograph of the Kidney Showing Necrosis
KEY: Extract/drug administered: 30µg Sida acuta
Plate 10. Photomicrograph of the Kidney Showing Vacuolation
KEY: Extract/drug administered: 30µg Napoleonea imperialis

Plate 11. Photomicrograph of the Kidney Showing Distortion of Stroma and Glomerulus
KEY: Extract/drug administered: 50µg Vernonia amygdalina

Plate 12. Photomicrograph of the Liver Showing Inflammatory Changes
KEY: Extract/drug administered: 30µg Napoleonea imperialis

Plate 13. Photomicrograph of the Liver Showing Hepatocytic Degenerative Changes
KEY: Extract/drug administered: 40µg Sida acuta

Plate 14. Photomicrograph of the Liver Showing Necrosis
KEY: Extract/drug administered: 30µg Sida acuta

Plate 15. Photomicrograph of the Liver Showing Distortion of Hepatocytes
KEY: Extract/drug administered: 40µg Vernonia amygdalina
The phytochemical and proximate analysis of the selected medicinal plants (Vernonia amygdalina, Sida acuta and Napoleonoea imperialis) showed that the active principles (Alkaloids, Flavonoids, Cardiac Glycosides, Tanin, Saponin, Terpenoid, Oxalate, Phytate, Phenolic compound and Steroids) are known phytochemical compound useful in production of chemotherapeautic agents and other industrial products.

Table 1 shows the effects of the plant extracts on 3 organs: intestine, kidneys and liver, of the laboratory animals. As shown, all the laboratory animals treated with 10µg of crude extracts of Napoleonoea imperialis, Sida acuta and Vernonia amygdalina, had no impairment in their intestine, kidneys and liver.

At 30 µg, crude extracts of Napoleonoea imperialis, Sida acuta and Vernonia amygdalina showed varying features and degrees of impairments.

This shows that at higher concentration (30 µg), more impairments occur in the organs especially in the liver. This may be as a result of the high content of phytochemical agents present in the plant extracts (Vernonia amygdalina, Sida acuta and Napoleonoea imperialis) used in this study. The potency of these extracts may have been amplified on account of increased concentration or build up of specific phytochemicals.

Organ impairment on laboratory animals due to plant extract showed that, Sida acuta caused the highest number of organ impairment, 3 (25%) had abnormal intestine, 2 (16.7%) had abnormal kidney, and 3 (25%), followed by Napoleonoea imperialis, 2 (16.7%) had abnormal intestine, 1 (8.3%) had abnormal kidney, and 3 (25%) had abnormal liver and the least by Vernonia amygdalina, 1 (7.7%) had abnormal intestine, 1 (7.7%) had abnormal kidney, and 2 (15.4%) had abnormal liver. (Table 2).The rate of abnormalities is higher in animals treated with Sida acuta extracts and may be as a result of the high content of Oxalate present in the leaf of the plant.

Table 3 shows that plant extracts used in this study exhibited more organ impairments on male than female laboratory animals. This finding may be due to difference in response to foreign bodies between male and female animals. Very little organ impairment was observed on kidneys of female laboratory animals whereas, more impairments were observed on kidneys of male laboratory animals. This finding may be because male animals retain urine for longer periods than females. The plant extracts were administered orally. The female animals may have excreted large quantities of the extracts via urine within a short time, retaining very little quantities that could not have exhibited much organ impairments as observed in this study. In contrast, male laboratory animals probably retained all the extracts administered for fairly long period leading to absorption of higher concentrations of the extracts, hence higher organ impairments observed.

Generally, this study observed organ impairments on the liver, kidneys and intestine of the laboratory animals. As shown, 3 types of impairment: inflammatory changes (plate 4), degenerative changes (plate 5) and distortion (plate 6) were observed on the intestine of the laboratory animals. These organ impairments occurred at higher concentrations (20 to 40µg) for Sida acuta and Napoleonoea imperialis while V. amygdalina showed no impairment even at 20 µg on any of the organs (intestine, kidney and liver).

All these evidences revealed that V. amygdalina is a very important plant that can be exploited for cyto-protective purposes. The cyto-protective mechanism may be by mopping up free radical there by protecting the cells of the organs from any type of assaults. Studies have shown that anti-oxidants significantly strengthen the gastric walls and protect tissue from oxidative damage (Martin, 1996). Several findings showed that V. amygdalina has strong antioxidant activity corresponding to mitigation of the generation of hydroxyl radicals [24].

On the liver, 4 types of impairment: inflammatory changes (plate 12), hepatocytic degenerative changes (plate 13), necrosis (plate 14) and distortion of hepatocytes (plate 15), were observed.

The acute exposure of the Albino rats to concentrated grades (30 µg) of Vernonia
amygdalina, Sida acuta and Napoleonoea imperialis induced progressive striking histological alterations in the liver (inflammatory changes, hepatocytic degenerative changes, necrosis and distortion of hepatocytes).

Retention of water inside hepatocyte resulting in cell enlargement (inflammatory changes) may be due to reduction of energy necessary for ion regulation in the cells.

Some bioactive substances such as alkaloids, flavanoids, tannins, saponins and phenol are present in the extracts of the plants in definite quantities. Previous studies [25] reported that phenolic compounds (e.g. flavonoids), nitrogen compounds (e.g. alkaloids), saponins, and tannin present in the plant extracts have antiradical activities. Free radicals setup a chain reaction that can cause biological damage by stimulating glycation of protein, inactivation of enzymes and alteration in the structure and function of collagen basement and other membranes.

The histopathological changes observed in the kidney sections showed 5 types of impairment: lymphocytic infiltration (plate 7), degenerative changes (plate 8), necrosis (plate 9), vacuolation (plate 10) and distortion of stroma and glomerulus (plate 11).

Kebe et al. [26,27] reported that the increase in the lumbar spaces in the treated rats might be an indication that the extract has adversely affected the renal clearance which may consequently lead to diuresis.

The nature of impairment caused on the different organs differ remarkably. The highest frequency of impairment was observed on the liver followed by intestine and the least impairment was on the kidneys [28,29].

5. CONCLUSION

The secondary metabolite contents of the plant extracts were high and may be responsible for the organ impairment in the Albino Rats.

This study has shown that Napoleonae imperialis, Sida acuta and Vernonia amygdalina extracts exhibit organ impairment on host oragns: intestine, kidney and liver only at higher concentration.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

15. Dillehay DL, Lehner NDM, Huerkamp MJ. The effectiveness of microisolator cage system and sentinel mice for controlling and detecting MHV and sendai virus; 1990.
28. Esimone CO, Ibezig EC, Chah KF. The wound healing effect of herbal ointments
formulated with Napoleonaea imperialis.

© 2022 Uduchi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/86610