Histopathological and Haematological Changes Observed in Adult Wistar Rats Administered with *Momordica charantia* (Bitter Melon) Aqueous Leaf Extract

Benard A. Solomon a* and Frederick O. Akinbo b

a Histopathology Laboratory, Pathology Department, University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria.
b Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, University of Benin, Edo State, Nigeria.

Authors’ contributions

This work was carried out in collaboration between both authors. Author BAS designed the study, wrote the protocol, managed the experimental process, managed the literature searches, analyses of the study, identification of plant species and wrote the first and subsequent drafts of the manuscript while author FOA corrected, proof-read and approved the final manuscript. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JOCAMR/2022/v20i2/413

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle.com/review-history/94107

Received: 01/10/2022
Accepted: 05/12/2022
Published: 24/12/2022

ABSTRACT

This research work was carried out to investigate the effect of the aqueous leaf extract of *Momordica charantia* on some hematological parameters and ovaries of adult Wistar rats. Twenty
five adult Wistar rats were grouped in to five (Control and A,B,C,D) and fed with saline, 100 mg/kg, 200 mg/kg, 400 mg/kg and 800 mg/kg of aqueous leaf extract of the plant respectively for 30 days. Blood was collected for packed cell volume, PCV, white blood cell count, WBC, red blood cell count, RBC and platelet count while ovaries were harvested for histopathological studies. This study was carried out at the Department of Medical Laboratory Science, University of Benin, Edo State, Nigeria between October and December 2020. The results of the work showed that there was significant decrease in packed cell volume (PCV), and red blood cell count (RBC) compared with the control (p<0.05) while dilation of blood vessels and thickening of tunica media of arteries were observed in ovaries of the rats. It was concluded that aqueous leaf extract of *Momordica charantia* has haematological and histomorphological effects on adult Wistar rats which could lead to anaemia and likely infertility.

Keywords: *Momordica charantia*; packed cell volume (PCV); red blood cell count (RBC); blood vessel; histopathology.

1. INTRODUCTION

Momordica charantia commonly called bitter melon or bitter gourd is a one of the plants with wide application in complementary medicine and widely distributed in the tropics and subtropics [1, 2]. It is also widely available in India, China, and South Korea [3]. The plant was reported to be rich in nutritional elements and prevents various forms of diseases [4,5]. Its leaf extract was reported to have cytotoxic effect on *Plasmodium falciparum* trophozoites thus inhibiting their development to the schizont stage [6]. Earlier investigations had confirmed the larvicidal property of *M. Charantia* against three mosquito species, *Anopheles stephensi*, *Culex quinquefasciatus* and *Aedes aegypti* [7].

The weight reduction effect of *Momordica charantia* has also been investigated [8]. This was attributed to reduction in metabolic activities said to be induced by inhibition of enzyme activities [9].

The effects of *Momordica charantia*’s alcoholic leaf extract on certain organs of the body has been investigated and found to have some toxicity effect on organs like liver and kidney of adult Wistar rats [10]. Seeds of the plant have also been reported to have antireproductive effect on adult Wistar rats [11].

In Nigeria, the leaves of the plant are widely consumed as condiments in traditional medicine for the treatment of diabetes mellitus, birth control, fever, stomach disorders, cancers and have been reportedly abused [12]. Since both traditional vendors and rural dwellers who consume the herbs are unaware of the consequences, there is a need that the toxicological effects or otherwise be scientifically ascertained in order to guide herbal vendors and consumers on its negative effects.

While several studies have reported the effect of aqueous leaf extract of *M. Charantia* on some hematological parameters and some organs, there exist paucity of information on its effect on packed cell volume, red blood cell count and morphology of the ovaries. This study therefore wants to add to knowledge on the hematological and histopathological effects of aqueous leaf extract of the plant on the named blood parameters and ovaries of adult wistar rats.

2. MATERIALS AND METHODS

2.1 Plant Collection

Fresh leaves of *Momordica charantia* were harvested in a local garden at Alagbado area, off Eyenkorin, Ilorin, Kwara State and taken to the Herbarium unit of the Department of Plant Biology, University of Ilorin, for identification and authentication with number UILH/001/963/2020. The leaves were dried away from direct sun for one week.

2.1.1 Plant extraction

Soaking method was used for the extraction [13]. *Momordica charantia* dry leaves were soaked for 48 hrs in a conical flask plugged with cotton wool. The mixture was filtered, evaporated over a water bath and kept inside hot air oven at 30oC until a semi solid substance was obtained.

2.2 Experimental Animals

2.2.1 Procurement and treatment

Twenty five Wistar rats weighing between 180-200g body weights were purchased from the
Animal House of the Department of Anatomy, University of Benin, Benin City. The Wistar rats were allowed to acclimatize for 2 weeks where feed and water were administered without restrictions. The International Guidelines For Animals handling was observed in the course of this study. Sample size determined as recommended by Jaykaran and Kantharia [14].

2.2.2 Preparation and administration of extract

The extract of *Momordica charantia* was weighed by using a digital balance which measured in grams. The weighed extract was transferred to well labeled, small sized plastic bottles. The bottles were labeled according to the predetermined dosage of *Momordica charantia*. The corresponding weights were placed in each bottle with matching labels and reconstituted in 1ml of distilled water. The rats were subsequently administered with the extract of *M. charantia* through oral gavage while giving them their normal feed and drinking water ad libitum.

2.2.3 Acute toxicity

This was done in two phases. In the first phase, nine Wistar rats were grouped into three comprising three each. They were administered 10, 100 and 1000 mg/kg of *M. charantia* leaves extract respectively and placed under observation for 24 hrs. Their behaviours were observed as well as mortality. No mortality was recorded at the end of this phase.

In the second phase, three Wistar rats were distributed into three groups of one animal each and administered 1600, 2900 and 5000 mg/kg of *M. charantia* leaves extract and then observed for 24 hr for behavioural changes and mortality [15,16]. No mortality was observed at the end of this phase.

2.2.4 Experimental design

Twenty five Wistar rats were randomly distributed into 5 groups including the Control and experimental groups after 2 weeks acclimatization as follows:

Control group: Consisting of 5 rats were given 1 ml of normal saline daily through oral gavage. The rats in this group were sacrificed at the end of the experiment (30 days).

Group A: Consisted of 5 rats and were given 100 mg/kg body weight of aqueous extract of *Momordia charantia* and sacrificed at the end of one month.

Group B: Consisted of 5 rats and were given 200 mg/kg body weight of aqueous extract of *Momordia charantia* and sacrificed at the end of one month.

Group C: Consisted of 5 rats and were given 400 mg/kg body weight of aqueous extract of *Momordia charantia* and sacrificed at the end of one month.

Group D: Consisted of 5 rats and were given 800 mg/kg body weight of aqueous extract of *Momordia charantia* and sacrificed at the end of one month.

2.3 Collection of Specimens

Cardiac puncture under anesthesia was employed to collect blood samples into Ethylene Diamine Tetraacetic Acid (EDTA) specimen bottles for the evaluation of Full Blood Count (FBC). Ovaries were removed at necropsy and fixed immediately in 10% neutral buffered formalin (NBF).

2.4 Tissue Processing

All organs were examined for gross lesions. Small pieces of tissues were taken at necropsy. The tissues were processed in an automatic tissue processor (LEICA, 2000 Frankfurt, Germany). Tissues were dehydrated through ascending grades of alcohol, cleared in xylene, impregnated in molten paraffin wax and finally embedded in molten paraffin wax. They were trimmed at 0μ and sectioned at 5μ using a Rotary Microtome (LEICA RM 2125). The sections were stained by Mayer's haematoxylin and eosin (H&E) staining technique for microscopic assessment. The stained sections were examined microscopically using Olympus Microscope.

2.5 Haematoxylin and Eosin Staining Technique

Sections of testes and ovaries were taken to water, hydrated in descending grades of alcohol and water. Hydrated sections were stained in Mayer’s haematoxylin for 10 min, rinsed in water and differentiated in 1% acid alcohol. Sections
were rinsed in water, allowed to blue for 10 min and counterstained in 1% aqueous eosin for 2 min. Stained sections were rinsed in water, dehydrated in ascending grades of alcohol, cleared in xylene and mounted in Dibutyl Phthalate Polystyrene Xylene (DPX). Stained sections were examined for histopathological changes using Olympus Microscope.

2.6 Full Blood Count

The blood samples were collected through cardiac puncture into EDTA bottles for each rat and analysed using the Sysmex automated machine (Sysmex Autoanalyzer, Koba, Japan) for Haematocrit, Platelets, Red blood cell (RBC) and White blood cell (WBC).

2.7 Statistical Analysis

The data obtained from these studies were analyzed with Statistical Products and Service Solution (SPSS) software, Version 20. One-way analysis of variance (ANOVA) was used to compare mean difference between and within the groups complemented with post - hoc test. The differences were considered statistically significant at p<0.05. Data were expressed as mean and ±SEM (standard error of mean). Data were presented in Table 1.

3. RESULTS AND DISCUSSION

3.1 Hematological Parameters

Results showed that there was a significant effect of M. charantia on hematocrit (PCV) value of Wistar rats, red blood cell (RBC) count and white blood cell (WBC) count when compared with the control (p<0.05). There was no significant effect on platelets count. There was a significant reduction in the hematocrit (PCV) and red blood cell count (RBC) of Wistar rats treated with aqueous extract of Momordica charantia for 30 days at the dosage of 100 mg/kg, 200 mg/kg, 400 mg/kg and 800 mg/kg respectively when compared with the control (P<0.05) (Table 1).

There was a dose dependent increase in the white blood cell count (WBC) of Wistar rats at 100, 200, 400 and 800 mg/kg administered with extract of Momordica charantia. The increase observed for 100 mg/kg and 800 mg/kg was however statistically significant while that of 200 mg/kg and 400 mg/kg was not significant when compared with the control (P<0.05) (Table 1). There was also an observed reduction in platelet count for rats administered 100, 200, 400 and 800 mg/kg of Momordica charantia but the reduction was not statistically significant (P>0.05) as shown in Table 1.

3.2 Ovaries

Sections of ovary of rats given 100 mg/kg body weight of Momordica charantia extract showed secondary follicles suspended in a dense connective tissue stroma, composed mainly of collagen connective tissues. The ovarian stroma surrounding a mature Graafian follicle is composed of spindle –shaped, fibroblast-like cells and delicate collagen fibres mixed with ground substance. The oocyte of the Graafian follicle was seen detached from the zona granulosa by a thick layer of cumulus oophorus but closely knitted by the corona radiata. The zona pellucida was clear and distinct. The follicular antrum was wide and amorphous.

Sections also showed mature corpus luteum with eosinophilic cytoplasm and large nuclei. There were numerous vesicular spaces between the luteal cells. A wide and oedematous blood vessel with few red blood cells was identified between two corpus luteum (Fig. 1A). Sections of ovary of rats given 200 mg/kg body weight of Momordica charantia extract showed many corpus luteum with vesicular spaces. One of the follicles seen presented with a large cystic space. Arteries with thick tunica intima and few red blood cells were also identified (Fig. 1B).

Momordica charantia has become attractive as a source of complementary medicine especially for its antimalaria and abortificient effect among rural dwellers in sub Saharan Africa where malaria is endemic and sexual activity high especially among the young population which could have been a reason for its reported abuse (Umar IM, Unisersity of Benin, Nigeria, Unpublished results).

It has been proven that Momordica charantia has the capability to arrest the development of malaria parasites from the trophozoite to the schizont stage [10]. One of the consequences of malaria disease is anaemia [2]. Although oral consumption of Momordica charantia has been reported to be safe [15], the significant reduction of the red blood cell count (RBC) and packed cell volume (PCV) observed from our investigation raises concern as reduced PCV is
an indication of anaemia [17]. The low PCV and RBC observed in this study may be attributed to the inability of *M. Charantia* to stimulate erythropoietin production in the liver [8]. Traditional practitioners should therefore endeavour to supplement treatment of malaria using *Momordica charantia* with haematinics and vitamins if studies in humans corroborate this finding of ours so as to boost the low values of PCV and RBC count.

Blood supplies to organs are limited when there is anemia [17]. The dilation of blood vessels and thickening of the tunica media observed in the ovaries in this study could have been an indirect implication of the low RBC and PCV previously observed. Organs and tissues respond to compensate for reduction in volume of blood. One of such ways is dilation of blood vessels and thickening of the tunica media of the arteries [17]. When blood supply to the organ is reduced, nutrients available are also reduced which could lead to cellular dysfunction and hormonal imbalance. Cellular dysfunction in the ovaries could have negative reproductive implications [18].

The level of white blood cell count (WBC) was significantly elevated in this study especially at the dosage of 100mg/kg and 800 mg/kg. When WBC level is raised, stress, infection, inflammation and trauma are indicated. White blood cells are the body’s first line of action against infection or foreign aggression justifying their roles in the immune system. They ensure that the invading substance is attacked and eliminated before it manifests into any disease [16].

Table 1. Dose –Dependent Impact of *Momordica charantia* leaf extracts on some hematological parameters of wistar rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>PCV(%)</th>
<th>W.B.C. (10^9/L)</th>
<th>R.B.C. (10^12/L)</th>
<th>Platelets(10^9/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (1ml of saline)</td>
<td>49.66</td>
<td>10.06</td>
<td>8.55</td>
<td>1008</td>
</tr>
<tr>
<td>(P-values)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.051</td>
</tr>
<tr>
<td>A (100 mg/kg)</td>
<td>39.44 ± 2.1</td>
<td>10.60 ± 0.2</td>
<td>6.95 ± 0.2</td>
<td>537.80 ± 70.5</td>
</tr>
<tr>
<td>B (200 mg/kg)</td>
<td>42.02 ± 1.3</td>
<td>11.68 ± 0.2</td>
<td>7.55 ± 0.4</td>
<td>472.80 ± 219.5</td>
</tr>
<tr>
<td>C (400 mg/kg)</td>
<td>42.08 ± 0.5</td>
<td>14.24 ± 0.5</td>
<td>7.63 ± 0.1</td>
<td>417.20 ± 9.9</td>
</tr>
<tr>
<td>D (8000 mg/kg)</td>
<td>41.24 ± 1.2</td>
<td>16.86± 0.1</td>
<td>7.34 ± 0.1</td>
<td>458.60 ± 190.6</td>
</tr>
</tbody>
</table>

*P-values were expressed as Mean ± SEM for five animals (n=5) in each group after treatment with the extract of *Momordica charantia* for one month

![Fig. 1. A and B ovaries of adult wistar rats showing blood vessel to *M. Charantia* administration](image-url)
4. CONCLUSION

High consumption of *Momordica charantia* has reducing effect on the red blood cell count and packed cell volume of adult Wistar rats. It also has a dilating effect on blood vessels of ovaries of the rats. Care should therefore be exercised in its abusive use so as not to induce severe anemic conditions with tissue effects especially ovaries which may cause infertility.

CONSENT

It is not applicable.

ETHICAL APPROVAL

All authors hereby declare that "Principles of laboratory animal care" (NIH publication No. 85-23, revised 1985) were followed, as well as specific national laws where applicable. All experiments have been examined and approved by the appropriate ethics committee with ethical approval number v.1041/55.

ACKNOWLEDGEMENTS

The authors are grateful for the assistance provided by MLS Balogun Musibu of the Department of Pathology, University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria in animal care and necropsy.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

15. Enegide C, David A, Fidelis S. A New Method for Determining Acute Toxicity in

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/94107