Anxiolytic Mechanism(S) and Corticosterone-Attenuating Effect of Hydroalcoholic Leaf Extract of Tapinanthus globiferus Mistletoe Growing on Azadirachta indica Tree

Main Article Content

A. M. Umarudeen
M. G. Magaji


Similar pharmacodynamic mechanism(s) often underlie drug actions and toxicities of anxiolytic agents and medicinal extracts. Extracts of Tapinanthus globiferus and related plant species have been reported with anxiolytic activities. But mechanistic evaluations on these plant extracts are few. This study investigated the anxiolytic mechanism(s), including the corticosterone-attenuating effect, of hydroalcoholic Tapinanthus globiferus (HATG) leaf extract harvested from Azadirachta indica host tree in the mouse elevated zero-maze and restraint-induced acute stress paradigms using per cent open segment time (%OST) and brain/plasma corticosterone levels as endpoints, respectively. The results show that anxiolytic activity (%OST) of 150 mg/kg HATG leaf extract was reversed by pretreatment with 5 mg/kg caffeine (HATG alone, 10.90±1.73;HATG+Caffeine, 8.66±1.74), 2 mg/kg methysergide (MTD) (HATG alone, 98.70±14.98; HATG+MTD, 74.20±10.82) and 5 mg yohimbine (HATG alone, 120.10±10.72; HATG+Yohimine, 78.44±13.92) but not by 0.5 m/kg atropine (HATG alone, 104.60±25.31; HATG+Atropine, 105.40±11.85), 0.5 mg/kg flumazenil (HATG alone,80.27±9.69; HATG+Flumazenil, 80.75±10.19), 2 mg/kg cyproheptadine (HATG alone, 88.67±16.44; HATG+Cyproheptadine, 92.11±12.58), 0.2 mg/kg haloperidol (HATG alone, 74.11±17.33; HATG+Haloperidol, 94.00±32.54) and 5 mg/kg naloxone (HATG alone, 94.30±10.84; HATG+Naloxone, 95.30±6.86). The results also indicate HATG leaf extract (at 50, 150, 500 and 1500 mg/kg) caused largely dose-dependent and significant (p<0.05) attenuations in brain/plasma corticosterone levels (5.64±0.66/3.91±0.44,3.78±0.39/3.39±0.38, 4.26±0.34/3.22±0.18 and 2.74±0.51/2.74±0.22), respectively, in extract- compared to distilled water- (5.93±0.60/4.56±0.37) and diazepam-treated (2.34±0.19/2.44±0.29) mice subjected to restraint-induced acute stress. These findings suggest anxiolytic mechanism(s) of the extract may involve its interactions with the adenosine, non-5HT2 serotonin, alpha (α)2 receptors and the hypothalamus-pituitary-adrenal (HPA) axis. This study may constitute the first mechanistic and corticosterone modulation report on the extracts of this parasitic medicinal plant and may benefit from confirmatory radio-labelled binding assays in subsequent studies.

Cyproheptadine, HPA axis, methanol, methysergide, mice, restraint-induced acute stress.

Article Details

How to Cite
Umarudeen, A. M., & Magaji, M. G. (2020). Anxiolytic Mechanism(S) and Corticosterone-Attenuating Effect of Hydroalcoholic Leaf Extract of Tapinanthus globiferus Mistletoe Growing on Azadirachta indica Tree. Journal of Complementary and Alternative Medical Research, 10(1), 14-23.
Original Research Article


Ashton H. Benzodiazepine dependence. In Haddad P., Dursun S., Deakin B. (Eds.). Adverse Syndromes and Psychiatric Drugs: A Clinical Guide. Oxford University Press. 2004;239–60. ISBN: 978-0-19-852748-0.

McIntosh A, Semple D, Smyth R, Burns J, Darjee R. Depressants. Oxford Handbook of Psychiatry (1st Ed.). Oxford University Press. 2005;540. ISBN: 0-19-852783-7.

Lader M, Morton S. Benzodiazepine problems. Br J Addict. 199186:823-8.

Lader M, Tylee A, Donoghue J. Withdrawing benzodiazepines in primary care. CNS Drugs. 2009;23(1):19–34.

Lorenz RA, Jackson CW, Saitz M. Adjunctive use of atypical antipsychotics for treatment-resistant generalized anxiety disorder. Pharmacotherapy. 2010;30(9): 942–951.

Jeffrey RS, Geracioti TD. The treatment of generalized anxiety disorder with pregabalin, an atypical anxiolytic. Neuropsychiatr Dis Treat. 2007;3(2):237–243.

Outhoff K. The pharmacology of anxiolytics. South African Family Practice. 2010;52(2):99-105.

Koen N, Stein DJ. Pharmacotherapy of anxiety disorders: A critical review. Dialogues in Clinical Neuroscience. 2011;13(4):423-37.

Kirchner V, Silver LE, Kelly CA. Selective serotonin reuptake inhibitors and hyponatremia: Review and proposed mechanisms in the elderly. J Psychopharmacol. 1998;12:396–400.

Rosen RC, Lane RG, Menza M. Effects of SSRIs on sexual function: A critical review. J Clin Psychopharmacol. 1999;19:67–85.

Bystritsky A, Khalsa SS, Cameron EM, Schiffman J. Current diagnosis and treatment of anxiety disorders. P&T. 2013;38(1):30-57.

Bandelow B, Zohar J, Hollander E, Kasper S, Moller HJ. WFSBP task force. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for the pharmacological treatment of anxiety, obsessive-compulsive and post-traumatic stress disorders – first revision. World J Biol Psychiatry. 2008;9(4):248–312.

Almeida RF, Comasseto DD, Ramos DB, Hansel G, Zimmer E, Loureiro SO, Ganzella M, Souza DO. Guanosine anxiolytic-like effect involves adenosinergic and glutamatergic neurotransmitter systems. Mol Neurobiol. 2017;54(1): 423‐436.

Smith JS, Schindler AG, Martinelli E, Gustin RM, Bruchas MR, Chavkin C. Stress-induced activation of the dynorphin/κ-opioid receptor system in the amygdala potentiates nicotine conditioned place preference. J Neurosci. 2012;32: 1488–95.

Micale V, Cristino L, Tamburella A, Petrosino S, Leggio GM, Drago F, Marzo VD. Anxiolytic effects in mice of a dual blocker of fatty acid amide hydrolase and transient receptor potential vanilloid type-1 channels. Neuropsychopharmacology. 2009;34:593–606.

Spooren W, Lesage A, Lavreysen H, Gasparini F, Steckler T. Metabotropic glutamate receptors: Their therapeutic potential in anxiety. Curr Top Behav Neurosci. 2010;2:391–413.

Reis FLV, Masson S, Oliveira AR, Brandão ML. Dopaminergic mechanisms in the conditioned and unconditioned fear as assessed by the two-way avoidance and light switch-off tests. Pharmacol Biochem Behav. 2004;79:359-365.

Frick A, Ahs F, Linnman C, Jonasson M, Appel L, Lubberink M, Långström B, Fredrikson M, Furmark T. Increased neurokinin-1 receptor availability in the amygdala in social anxiety disorder: A positron emission tomography study with [11C] GR205171. Citation: Transl Psychiatry. 2015;5:e597.

The Plant List Version 1.1.

Gill LS, Onyibe HI. Mistletoes on rubber trees in Nigeria. Haustorium. 1990;23:1–2.

Bright EO, Okusanya BA. Infestation of economic plants in Badeggi by Tapinanthus dodoneifolius (DC) Danser and Tapinanthus globiferus (A. Rich) Van Tiegh. Nigerian J of Weed Science. 1998;11:51–56.

Adodo A. Nature power, A Christian Approach to Herbal medicine. 3rd Edition. Benedictine Publication Nigeria. 7th Edition. Edo State. Printing by Generation Press Ltd, Surulere, Lagos. 2004;103–111.

Polhill R, Wiens D. Mistletoe of Africa. The Royal Botanic Garden, Kew, U. K. 1998;370.

Zee-Cheng R. Anticancer research on Loranthaceae plants. Drugs Future. 1997;22:519–530.

Dibong SD, Engone ONL, Din N, Priso RJ, Taffouo VOD, Fankem H, Salle G, Missoup AD, Boussim IJ, Amougou A. An assessment on the uses of Loranthaceae in ethnopharmacology in Cameroon; A case study made in Logbessou, North of Douala. J Med Plants Res. 2009;3(8):592–595.

Akinmoladun AC, Obuotor EM, Farombi EO. Evaluation of antioxidant and free radical scavenging capacities of some Nigerian indigenous medicinal plants. Journal of Medicinal Food. 2010;13(2): 444–451.

Gray AM, Flatt PR. Insulin-secreting activity of the traditional anti-diabetic plant V album (mistletoe). J Endocrinol. 1999;160:409–414.

Patrick-Iwuanyanwu KC, Onyeike EN, Wegwu MO. Hepatoprotective effects of methanolic extract and fractions of African mistletoe Tapinanthus bangwensis (Engl. & K. Krause) from Nigeria. Excli Journal. 2010;9:187–194.

Kabiru M. Phytochemical screening and antibacterial activity of the crude extract and fractions of Tapinanthus globiferus leaves on the bacterial isolates of wound. World Journal of Pharmaceutical Research. 2017;6:209–238.

Ogunbolude Y, Ibrahim M, Elekofehinti OO, Adeniran A, Abolaji AO, Rocha JBT, Kamdem JP. Effects of Tapinanthus globiferus and Zanthoxylum zanthoxyloides extracts on human leukocytes in vitro. Journal of Intercultural Ethnopharmacology. 2014;3(4):167-172.

Borokini TI, Omotayo FO. Phytochemical and ethnobotanical study of some selected medicinal plants from Nigeria. Journal of Medicinal Plants Research. 2012;6(7): 1106-1118.

Abedo AJ, Jonah A, Abdullahi R, Mazadu M, Idris H, Muhammed H, Shettima F, Ombugadi S, Daudu M, Garba J, Abdulmalik U, Kagu B. Comparative studies of In vitro, In vivo trypanocidal activity and phytochemical screening of Tapinanthus globiferus and Gongronema latifolium. International Journal of Animal and Veterinary Advances. 2013;5(3):120-124.

Harquin Simplice F, David Emery T, HervéHervé NA. Enhancing spatial memory: Anxiolytic and antidepressant effects of Tapinanthus dodoneifolius (DC) Danser in mice. Neurology Research International. 2014;9. Article ID: 974308.

Shehu A, Magaji MG, Yau J, Abubakar A. Ethno-botanical survey of medicinal plants used for the management of depression by Hausa tribes of Kaduna State, Nigeria. Journal of Medicinal Plants Research. 2017;11:562–567.

Emaikwu V, Ndukwe IG, Iyun ORA, Anyam JY. Preliminary phytochemical and antimicrobial activity screening of crude extracts of birdlime (Tapinanthus globiferus). Journal of Applied Sciences and Environmental Management. 2019;23(2):305.

Abubakar K, Yunus AT, Abubakar MR, Ugwah-Oguejiofor JC, Muhammad AA. Antioxidant and antikindling effect of Tapinanthus globiferus growing on Ficus glumosa in pentylenetetrazole induced kindled rats. African Journal of Biotechnology. 2018;17:73–80.

Umarudeen AM, Magaji MG, Shaibu SO, Aminu C, Musa AI. Acute anxiolytic activity of aqueous Ampelocissus africana whole-plant, Ficus sycomorus stem bark and Tapinanthus globiferus leaf extracts in Swiss Albino mice. International Archives of Medical and Health Research. 2019;1(3):75-81.

Umarudeen AM, Magaji MG. Comparative in-vivo anxiolytic efficacy of aqueous and methanol Tapinanthus globiferus leaf extracts. International Archives of Medical and Health Research. 2019;1(3):89-93.

Umarudeen AM, Aminu C. Acute toxicological and in-vivo anxiolytic activity screening of aqueous and chloroform fractions of hydroalcoholic Tapinanthus globiferus leaf extracts. World Journal of Innovative Research. 2020;8(5):9-12.

Bailey KR, Crawley JN, Anxiety-related behaviors in mice. In: Buccafusco JJ, Ed. Methods of Behavior Analysis in Neuroscience. 2nd Ed. Boca Raton (FL): CRC Press/Taylor & Francis; 2009; Chapter 5.

Neumann ID, Wegener G, Homberg JR, Cohen H, Slattery DA, Zohar J, Olivier JDA, Mathe AA. Animal models of depression and anxiety: What do they tell us about the human condition? Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2011;35:1357–1375.

Perkins AM, Inchley-Mort SL, Pickering AD, Corr PJ, Burgess AP. A facial expression for anxiety. Journal of Personality and Social Psychology. 2012;102(5):910–924.

Shepherd JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT. Behavioural and pharmacological characterisation of the elevated ‘zero-maze’ as an animal model of anxiety. Psychopharmacology. 1994; 116:56–64.

Kulkarni SK, Bishnoi M, Singh K. Elevated zero-maze: A paradigm to evaluate the anti-anxiety effects of drugs. Methods and Findings in Experimental and Clinical Pharmacology. 2007;29(5):343-8.

Aguilera G. Corticotropin-releasing hormone, receptor regulation and the stress response. Trends in Endocrinology and Metabolism. 1998;9:329–336.

Papadimitriou A, Priftis KN. Regulation of the hypothalamic-pituitary-adrenal axis. NeuroImmuno Modulation. 2009;16:265–271.

Sheikh N, Ahmad A, Siripurapu KB, Kuchibhotla VK, Singh S, Palit G. Effect of Bacopa monniera on stress-induced changes in plasma corticosterone and brain monoamines in rats. J Ethnopharmacol. 2007;111:671-76.

Hlavacova N, Bakos J, Jezova D. Eplerenone, a selective mineralocorticoid receptor blocker, exerts anxiolytic effects accompanied by changes in stress hormone release. Journal of Psycho-pharmacology. 2010;24:779–786.

Shi SN, Shi JL, Liu Y, Wang YL, Wang CG, Hou WH, Guo JY. The anxiolytic effects of valproate in rats involves changes in corticosterone levels. Evidence-Based Complementary and Alternative Medicine. 2014;8. Article ID: 325948.

Chioca LR, Ferro MM, Baretta IP, Oliveira SM, Silva CR, Ferreira J, Losso EM, Andreatini R. Anxiolytic-like effect of lavender essential oil inhalation in mice: Participation of serotonergic but not GABAA/benzodiazepine neurotrans-mission. Journal of Ethnopharmacology. 2013;147(2):412-8.

Kulkarni SK, Singh K, Bishnoi M. Involvement of adenosinergic receptors in anxiety-related behaviours. Indian Journal of Experimental Biology. 2007;45:439–443.

Aderibigbe A, Iwalewa E, Adesina, Agboola OI. Studies of behavioural and neural mechanism of aridanin isolated from Tetrapleura tetraptera in mice. International Journal of Pharmacology. 2010;6:480–486.

Afify EA, Alkreathy HM, Ali AS, Alfaifi HA, Khan LM. Characterization of the antinociceptive mechanisms of khat extract (Catha edulis) in mice. Frontiers in Neurology. 2017;8(Article 69):1-10.

Consoli D, Leggio GM, Mazzola C, Micale V, Drago F. Behavioral effects of the β3 adrenoceptor agonist SR58611A: Is it the putative prototype of a new class of antidepressant/anxiolytic drugs? European Journal of Pharmacology. 2007;373:139–47.

Ishola IO, Chatterjee M, Tota S, Tadigopulla N, Adeyemi OO, Palit G, Shukla R. Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacology Biochemistry and Behavior. 2012;103:322–331.

Ishola IO, Akinyede AA, Sholarin AM. Antidepressant and anxiolytic properties of the methanolic extract of Momordica charantia Linn (Cucurbitaceae) and its mechanism of action. Drug Research. 2014;64:368–376.

Almeida RF, Comasseto DD, Ramos DB, Hansel G, Zimmer E, Loureiro SO, Ganzella M, Souza DO. Guanosine anxiolytic-like effect involves adenosinergic and glutamatergic neurotransmitter systems. Mol Neurobiol. 2017;54(1): 423‐436.

Millan MJ. The neurobiology and control of anxious states. Prog Neurobiol. 2003;70: 83–244.

Childs E, Hohoff C, Deckert J, Xu K, Badner J, Wit H. De association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsycho-pharmacology. 2008;33:2791–2800.

Rogers PJ, Hohof C, Heatherley SV, Mullings EL, Maxfield PJ, Evershed RP, Deckert J, Nutt D. Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 polymorphisms and habitual level of caffeine consumption. Neuropsycho-pharmacology. 2010;35:1973–1983.

Okuyama E, Ebihara H, Takeuchi H, Yamazaki M. Adenosine, the anxiolytic-like principle of the Arillus of Euphoria longana. Planta Medica. 1999;65:115–119.

Koetter U, Barrett M, Lacher S, Abdelrahman A, Dolnick D. Interactions of Magnolia and Ziziphus extracts with selected central nervous system receptors. Journal of Ethnopharmacology. 2009;124: 421–425.

Oekelen DV, Luyten WHML, Leysen JE. 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sciences. 2003;72:2429–2449.

Mato S, Vidal R, Castro E, Díaz Á, Pazos Á, Valdizán EM. Long-term fluoxetine treatment modulates cannabinoid type 1 receptor-mediated inhibition of adenylyl cyclase in the rat prefrontal cortex through 5-hydroxytryptamine1A receptor-dependent mechanisms. Molecular Pharmacology. 2010;77:424–434.

Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: Pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Frontiers in Behavioral Neuroscience. 2014;8:199.

Li J, Liu QT, Chen Y, Liu J, Shi JL, Liu Y, Guo JY. Involvement of 5-HT1A receptors in the anxiolytic-like effects of quercitrin and evidence of the involvement of the monoaminergic system. Evidence-based Complementary and Alternative Medicine. 2016;10. Article ID: 6530364.

Costa CA, Cury TC, Cassettari BO, Takahira RK, Flório JC, Costa M. Citrus aurantium L. essential oil exhibits anxiolytic-like activity mediated by 5-HT(1A)-receptors and reduces cholesterol after repeated oral treatment. BMC Complement Altern Med. 2013;13:42.

Berrocoso E, Micó JA, Ugedo L. In vivo effect of tramadol on locus coeruleus neurons is mediated by α2-adrenoceptors and modulated by serotonin. Neuropharmacology. 2006;51(1):146-53.

Aguilera G. Corticotropin-releasing hormone, receptor regulation and the stress response. Trends in Endocrinology and Metabolism. 1998;9:329–336.

Papadimitriou A, Priftis KN. Regulation of the hypothalamic-pituitary-adrenal axis. NeuroImmuno Modulation. 2009;16:265–271.