Combinatorial Evaluation of Antiviral Activity of some Nigerian Medicinal Plants on SARS-CoV-2Combinatorial Evaluation of Antiviral Activity of some Nigerian Medicinal Plants on SARS-CoV-2

Main Article Content

Kakjing D. Falang
Catherine O. Poyi
Ukpe Ajima
Bukata B. Bukar
Kennedy I. Amagon
James G. Damen
Yusuf Agabi
Richard J. Kutshik
Ishaya Y. Longdet
Simji S. Gomerep
Ismaila Shittu
Stephen D. Davou
Jacob A. Kolawole
Noel N. Wannang


The coronavirus disease COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has presented unprecedented challenges to the healthcare systems in the world. There are no definite effective therapeutic agents or vaccines against the virus currently. However clinical management of the infection includes prevention, control measures, supportive care and repurposed drug therapy based on pathophysiology of the virus and manifestation of the disease condition thereby using antiviral agents such as remdesivir, lopinavir and favipiravir. Herbal preparations are being promoted for the management of Covid-19. Some selected Nigerian medicinal plants are hereby investigated by In-silico studies of the plant constituents. When compared with the listed therapeutic agents, the phytochemical constituents of the selected plants have better binding affinity to several Covid-19 viral target proteins. Also they were found to be safe for human use with LD50 of >2000 mg/Kg for the plant extracts. Some of the plants also contained phytochemicals that can be employed for the symptoms of covid-19.

COVID-19, SAR-CoV-2, medicinal plants, phytochemical components, remdesivir, lopinavir, favipiravir.

Article Details

How to Cite
Falang, K. D., Poyi, C. O., Ajima, U., Bukar, B. B., Amagon, K. I., Damen, J. G., Agabi, Y., Kutshik, R. J., Longdet, I. Y., Gomerep, S. S., Shittu, I., Davou, S. D., Kolawole, J. A., & Wannang, N. N. (2020). Combinatorial Evaluation of Antiviral Activity of some Nigerian Medicinal Plants on SARS-CoV-2Combinatorial Evaluation of Antiviral Activity of some Nigerian Medicinal Plants on SARS-CoV-2. Journal of Complementary and Alternative Medical Research, 12(1), 38-50.
Original Research Article


Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal A, Venkatesan D, Ganesan H, Rajagopalan K, Rahman P, Cho SG, Kumar NS, & Subramaniam MD. COVID-19: A promising cure for the global panic. The science of the total environment. 2020;725:138277. Available:

World Health Organization. Coronavirus disease (COVID-19) Situation Report – 147; 2020.Available: Accessed 16/06/2020

Kupferschmidt K, Cohen J. Race to find COVID-19 treatments accelerates. Science. 2020;367(6485):412-1413.DOI: 10.1126/science.367.6485.1412.

Wu R, Wang L, Kuo HD, Shannar A, Peter R, Chou PJ, Li S, Hudlikar R, Liu X, Liu Z, Poiani GJ, Amorosa L, Brunetti L, Kong AN. An update on current therapeutic drugs treating COVID-19. Current Pharmacology Reports. 2020;1–15. Available:

Guy RK, DiPaola RS, Romanelli F, Dutch RE. Rapid repurposing of drugs for COVID-19. Science. 2020;368(6493):829-830.

Huang G. Computational models and methods for drug target prediction and drug repositioning. Combinatorial Chemistry & High Throughput Screening. 2020;23(4): 270-273.

Yang Y. Use of herbal drugs to treat COVID-19 should be with caution. Lancet; 2020. Available:

Xue X, Yang H, Shen W, Zhao Q, Li J, Yang K, Chen C, Jin Y, Bartlam M, Rao Z. Production of authentic SARS-CoV Mpro with enhanced activity: application as a novel tag-cleavage endopeptidase for protein overproduction. Journal of Molecular Biology. 2007;366(3):965–975. Available:

Dassault Systemes. BIOVIA Discovery studio modeling environment, release 2017, San Diego: Dassault Systemes. Available:

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019;47(D1):D1102–D1109. Available:

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx Methods. Mol Biol. 2015;1263:243-250.

Trott O, Olson AJ. Auto Dock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 20101;31(2):455–461. Available:

DeLano WL. Pymol: An open-source molecular graphics tool.CCP4 Newsletter on Protein Crystallography. 2002;40(1):82–92.

Schyman P, Liu R, Desai V, Wallqvist A. vNN Web Server for ADMET Predictions. Frontiers in pharmacology. 2017;8:889. Available:

Nickavar B, Mojab F, Javidnia K, Amoli MA. Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran Z. Naturforsch., C: J. Biosci. 2003;58:629- 631.

Rajabian A, Hosseinzadeh H. Dermatological effects of Nigella sativa and its constituent, Thymoquinone: A review. In:, Editor(s): V. R. Preedy, R. R. Watson (Eds). Nuts and Seeds in Health and Disease Prevention (Second Edition), Academic Press. 2020:329-355.

Ajiboye TO, Mohammed AO, Bello SA, Yusuf II, Ibitoye OB, Muritala HF, Onajobi IB. Antibacterial activity of Syzygium aromaticum seed: Studies on oxidative stress biomarkers and membrane permeability. Microbial Pathogenesis. 2016;95:208-215.

Frohlich PC, Santos KA, Palú F, Cardozo-Filho L, da Silva C, da Silva EA. Evaluation of the effects of temperature and pressure on the extraction of eugenol from clove (Syzygium aromaticum) leaves using supercritical CO2. The Journal of Supercritical Fluids. 2019;143:313-320.

Monteiro IN, Monteiro OD, Costa-Junior LM, Lima AD, Andrade EHD, Maia JGS, Filho VEM. Chemical composition and acaricide activity of an essential oil from a rare chemotype of Cinnamomum verum Presl on Rhipicephalus microplus (Acari: Ixodidae). Veterinary Parasitology. 2017;238:54-57.

Habtemariam S. The chemical and pharmacological basis of cinnamon (Cinnamomum species) as potential therapy for type-2 diabetes and associated diseases. In: S. Habtemariam (Ed.). Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases, Academic Press. 2019;505-550.

Khan S, Pandotra P, Qazi AK, Lone SA, Muzafar M, Gupta AP, Gupta S. Medicinal and nutritional qualities of Zingiberofficinale. In: R. R. Watson, V. R. Preedy (Eds.). Fruits, Vegetables, and Herbs, Academic Press. 2016;525-550.

Vasconcelos MD, Mota EF, Gomes-Rochette NF, Nunes-Pinheiro DCS, Nabavi SM, de Melo DF. Ginger (Zingiberofficinale Roscoe). In: S. M. Nabavi, A. S. Silva(Eds.). Nonvitamin and Nonmineral Nutritional Supplements Academic Press; 2019.

Han J, Ye M, Qiao X, Xu M, Wang Guo BD. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry, Journal of Pharmaceutical and Biomedical Analysis. 2008;47(3):516-525.

Efferth T, Herrmann F, Tahrani A, Wink M. Cytotoxic activity of secondary metabolites derived from Artemisia annua L. towards cancer cells in comparison to its designated active constituent artemisinin. Phytomedicine. 2011;18(11):959-969.

Oyeyemi IT, Akinlabi AA, Adewumi A, Aleshinloye AO, Oyeyemi OT. Vernoniaamygdalina: A folkloric herb with anthelminthic properties. Beni-Suef University Journal of Basic and Applied Sciences. 2018;7(1):43-49.

El-Saber Batiha G, MagdyBeshbishy AG, Wasef L, Elewa YHA, Al-Sagan AA, Abd El-Hack ME, Taha AE, Abd-Elhakim YM, Devkota HP. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A Review. Nutrients. 2020;12:872.

Mikaili P, Maadirad S, Moloudizargari M, Aghajanshakeri S, Sarahroodi S. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iranian Journal of Basic Medical Sciences. 2013;16(10):1031–1048.

Venuprasad MP, Kandikattu HK, Razack S, Khanum F. Phytochemical analysis of Ocimumgratissimum by LC-ESI–MS/MS and its antioxidant and anxiolytic effects. South African Journal of Botany. 2014;92:151-158.

Chimnoi N, Reuk-ngam N, Chuysinuan P, Khlaychan PD, Khunnawutmanotham N, Chokchaichamnankit D, Thamniyom W, Klayraung S, Mahidol C, Techasakul S. Characterization of essential oil from Ocimum gratissimum leaves: Antibacterial and mode of action against selected gastroenteritis pathogens. Microbial Pathogenesis. 2018;118:290-300.

Iwu MM, Diop AD, Meserole L, Okunji CO. Garcinia kola: a new look at an oldadaptogenic agent. In: Editor(s): M. M. Iwu, J. C. Wootton (Eds.). Advances in Phytomedicine, Elsevier. 2002;1:191- 199.

Mongalo NI, McGaw LJ, Finnie JF, Van Staden J. Securidacalongipedunculata Fresen (Polygalaceae): A review of its ethnomedicinal uses, phytochemistry, pharmacological properties and toxicology. Journal of Ethnopharmacology. 2015;165: 215-226.

Al-Youssef HM, Hassan WHB. Chemical constituents of Carissa edulisVahl, Arabian Journal of Chemistry. 2017;10(1):109-113.

Achenbach H, Waibel R, Addae-Mensah I. Lignans and other constituents from Carissa edulis. Phytochemistry. 1983;22(3):749-753.

Achenbach H, Waibel R, Addae-Mensah I. Sesquiterpenes from Carissa edulis. Phytochemistry. 1985;24(10):2325-2328.

Ferrara L. A fruit to discover: Cucumismetuliferus E. Mey Ex Naudin (Kiwano). Clin. Nutr. Metab. 2018;1:1

Krauze-Baranowska M, Cisowski W. (2001). Flavonoids from some species of the genus Cucumis. Biochemical Systematics and Ecology 2001;29(3):321-324.

Ghorbani A, Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med. 2017;7(4):433‐ 440. Available:

Zhong N, Zhang S, Zou P, Chen J, Kang X, Li Z, Liang C, Jin C, Xia B. Without its N-finger, the main protease of severe acute respiratory syndrome corona virus can form a novel through its C-terminal domain. Journal of Virology. 2008;82(9): 4227-4234. DOI: 10.1128/JVI.02612-07

Valerio Jr, LG. (2012). Application of advanced in silico methods for predictive modelling and information integration. Expert Opin Drug Metab Toxicol. 2012; 8(4):395-398.