Pharmacokinetics and Pharmacodynamics of Topical Decongestants Xylometazoline and Oxymetazoline: A Literature Review

Dmytro Grebeniuk *

Department of Endoscopic and Cardiovascular Surgery, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia, Ukraine.

Yaroslav Hrytsun

Department of Otorhinolaringology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine.

Oleg Nikulchenko

Department of Pediatric Infection Diseases, National Pirogov Memorial Medical University, Vinnytsya, Ukraine.

*Author to whom correspondence should be addressed.


Introduction: This article provides a review and detailed analysis of scientific publications on the pharmacokinetic and pharmacodynamic characteristics of xylometazoline and oxymetazoline. Xylometazoline and oxymetazoline are two commonly used nasal decongestants used to temporarily relieve nasal congestion caused by colds, allergies, and sinusitis. Both drugs narrow blood vessels in the nasal passages, reducing edema and rhinorrhea.

Aims: The aim of the study is to evaluate the pharmacokinetic and pharmacodynamic characteristics of xylometazoline and oxymetazoline based on a literature review.

Material and Methods: A retrospective review of literature data was performed using Scopus, Web of Science, PubMed, and ScienceDirect databases. Different keyword combinations, such as "topical decongestants", "xylometazoline", "oxymetazoline", "pharmacokinetics" and "pharmacodynamics", were used to search for information on the problem addressed. When processing search results, either the most recent publications (over the last 10 years) or the latest publications for this topic (regardless of their release) were chosen.

Results: After reviewing abstracts and getting acquainted with their full-text articles, 47 scientific sources that met the eligibility criteria were selected. Although there are minor differences between pharmacokinetics and pharmacodynamics of xylometazoline and oxymetazoline according to available literature sources, both drugs exhibit very low systemic exposure, thus reducing the number of side effects due to the lack of systemic action and producing a high local concentration of the drugs in areas of inflammation. Besides, because of its pharmacokinetic properties, xylometazoline has a faster onset of action and a shorter duration of therapeutic effect compared to oxymetazoline.

Keywords: Topical decongestants, xylometazoline, oxymetazoline, pharmacokinetics, pharmacodynamics, review

How to Cite

Grebeniuk , D., Hrytsun , Y., & Nikulchenko , O. (2023). Pharmacokinetics and Pharmacodynamics of Topical Decongestants Xylometazoline and Oxymetazoline: A Literature Review. Journal of Complementary and Alternative Medical Research, 24(3), 26–34.


Download data is not yet available.


Haenisch B, Walstab J, Herberhold S, Bootz F, Tschaikin M, Ramseger R, Bönisch H. Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline. Fundam Clin Pharmacol. 2010 Dec;24(6):729-39. DOI: 10.1111/j.1472-8206.2009.00805.x PMID: 20030735.

Deckx L, De Sutter AI, Guo L, Mir NA, van Driel ML. Nasal decongestants in monotherapy for the common cold. Cochrane Database Syst Rev. 2016 Oct 17;10(10):CD009612. DOI: 10.1002/14651858.CD009612.pub2 PMID: 27748955; PMCID: PMC6461189.

Jones RS. Conceptual Model for Using Imidazoline Derivative Solutions in Pulpal Management. J Clin Med. 2021 Mar 15;10(6):1212. DOI: 10.3390/jcm10061212 PMID: 33803990; PMCID: PMC7998280.

Joshi KS, Ho VWQ, Smith ME, Tysome JR. The effect of topical xylometazoline on Eustachian tube function. J Laryngol Otol. 2020 Jan;134(1):29-33. DOI: 10.1017/S0022215120000158 Epub 2020 Jan 22. PMID: 31964436.

Macmillan AJ, Phoon KM, Edafe O. Safety of topical administration of nasal decongestants and vasoconstrictors in paediatric nasal surgery - A systematic review. Int J Pediatr Otorhinolaryngol. 2022 Feb;153:111010. DOI: 10.1016/j.ijporl.2021.111010 Epub 2021 Dec 17. PMID: 34942425.

Reid JW, Rotenberg BW, Sowerby LJ. Contemporary decongestant practices of Canadian otolaryngologists for endoscopic sinus surgery. J Otolaryngol Head Neck Surg. 2019 Mar 18;48(1):15. DOI: 10.1186/s40463-019-0337-8 PMID: 30885260; PMCID: PMC6421656.

Eskiizmir G, Hirçin Z, Ozyurt B, Unlü H. A comparative analysis of the decongestive effect of oxymetazoline and xylometazoline in healthy subjects. Eur J Clin Pharmacol. 2011 Jan;67(1):19-23. DOI: 10.1007/s00228-010-0941-z Epub 2010 Nov 11. PMID: 21069518.

Hillier K, Jewell R. Oxymetazoline. xPharm: The Comprehensive Pharmacology Reference. 2007;1–6. DOI: 10.1016/b978-008055232-3.62349-9

PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 5709, Xylometazoline; [cited 2023 Sept. 23]. Available:

Bylund D. Xylometazoline. Reference Module in Biomedical Sciences, 1-3. DOI: 10.1016/b978-0-12-801238-3.98854-8

Druce HM, Ramsey DL, Karnati S, Carr AN. Topical nasal decongestant oxymetazoline (0.05%) provides relief of nasal symptoms for 12 hours. Rhinology. 2018 Dec 1;56(4):343-350. DOI: 10.4193/Rhin17.150 PMID: 29785414.

PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 4636, Oxymetazoline; [cited 2023 Sept. 23]. Available:

Pritchard S, Glover M, Guthrie G, Brum J, Ramsey D, Kappler G, et al. Effectiveness of 0.05% oxymetazoline (Vicks Sinex Micromist®) nasal spray in the treatment of objective nasal congestion demonstrated to 12 h post-administration by magnetic resonance imaging. Pulm Pharmacol Ther. 2014 Feb;27(1):121-6. DOI: 10.1016/j.pupt.2013.08.002 Epub 2013 Aug 27. PMID: 23988443.

Patel P, Singla J. Xylometazoline [Internet].; 2023 [cited 2023 Sep 24]. Available:

The Heads of medicines [Internet]. Mutual Recognition Index: Final PAR Scientific discussion – Klarigen; 2014. Available:

Hayes FJ, Baker TR, Dobson RL, Tsueda MS. Rapid liquid chromatographic-mass spectrometric assay for oxymetazoline in whole rat blood. J Chromatogr A. 1995 Feb 10;692(1-2):73-81. DOI: 10.1016/0021-9673(94)00630- PMID: 7719462.

Dowty ME, Dietsch CR. Improved prediction of in vivo peroral absorption from in vitro intestinal permeability using an internal standard to control for intra- and inter-rat variability. Pharm Res. 1997 Dec;14(12):1792-7. DOI: 10.1023/a:1012148300807 PMID: 9453070.

Duzman E, Anderson J, Vita JB, Lue JC, Chen CC, Leopold IH. Topically applied oxymetazoline. Ocular vasoconstrictive activity, pharmacokinetics, and metabolism. Arch Ophthalmol. 1983 Jul;101(7):1122-6. DOI:10.1001/archopht.1983.0104002012402 PMID: 6347152.

Mahajan MK, Uttamsingh V, Daniels JS, Gan LS, LeDuc BW, Williams DA. In vitro metabolism of oxymetazoline: Evidence for bioactivation to a reactive metabolite. Drug Metab Dispos. 2011 Apr;39(4):693-702. DOI: 10.1124/dmd.110.03600 Epub 2010 Dec 21. PMID: 21177487.

Druce HM, Bonner RF, Patow C, Choo P, Summers RJ, Kaliner MA. Response of nasal blood flow to neurohormones as measured by laser-Doppler velocimetry. J Appl Physiol Respir Environ Exerc Physiol. 1984 Oct;57(4):1276-83. DOI: 10.1152/jappl.1984.57.4.1276 PMID: 6389454.

Ichimura K, Jackson RT. Evidence of alpha 2-adrenoceptors in the nasal blood vessels of the dog. Arch Otolaryngol. 1984 Oct;110(10):647-51. DOI: 10.1001/archotol.1984.00800360019004 PMID: 6148058.

Berridge TL, Roach AG. Characterization of alpha-adrenoceptors in the vasculature of the canine nasal mucosa. Br J Pharmacol. 1986 Jun;88(2):345-54. DOI: 10.1111/j.1476-5381.1986.tb10210.x PMID: 2873858; PMCID: PMC1916819.

Corboz MR, Varty LM, Rizzo CA, Mutter JC, Rivelli MA, Wan Y, et al. Pharmacological characterization of alpha 2-adrenoceptor-mediated responses in pig nasal mucosa. Auton Autacoid Pharmacol. 2003 Aug;23(4):208-19. DOI: 10.1111/j.1474-8673.2003.00298.x PMID: 15084187.

Lacroix JS, Lundberg JM. Sympathetic vascular control of the pig nasal mucosa: adrenoceptor mechanisms in blood flow and volume control. Br J Pharmacol. 1989 Aug;97(4):1075-84. DOI: 10.1111/j.1476-5381.1989.tb12564.x

PMID: 2529015; PMCID: PMC1854604.

Andersson KE, Bende M. Adrenoceptors in the control of human nasal mucosal blood flow. Ann Otol Rhinol Laryngol. 1984 Mar-Apr;93(2 Pt 1):179-82. DOI: 10.1177/000348948409300216 PMID: 6201119.

Corboz MR, Rivelli MA, Varty L, Mutter J, Cartwright M, Rizzo CA, Eckel SP, Anthes JC, Hey JA. Pharmacological characterization of postjunctional alpha-adrenoceptors in human nasal mucosa. Am J Rhinol. 2005 Sep-Oct;19(5):495-502. PMID: 16270605.

Lacroix JS, Kurt AM, Auberson S, Bretton C. Beta-adrenergic mechanisms in the nasal mucosa vascular bed. Eur Arch Otorhinolaryngol. 1995;252(5):298-303. DOI: 10.1007/BF00185393 PMID: 7576588.

Lung MA, Phipps RJ, Wang JC, Widdicombe JG. Control of nasal vasculature and airflow resistance in the dog. J Physiol. 1984 Apr;349:535-51. DOI: 10.1113/jphysiol.1984.sp01517 PMID: 6204040; PMCID: PMC1199353.

Docherty JR. Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur J Pharmacol. 1998 Nov 13;361(1):1-15. DOI: 10.1016/s0014-2999(98)00682-7 PMID: 9851536.

Mathiazhagan S, Anand S, Parthiban R. Alpha Adrenergic Receptors: A Brief Perspective. IOSR Journal of Dental and Medical Sciences. 2013;7(4):16-19.

Altman JD, Trendelenburg AU, MacMillan L, Bernstein D, Limbird L, Starke K, Kobilka BK, Hein L. Abnormal regulation of the sympathetic nervous system in alpha2A-adrenergic receptor knockout mice. Mol Pharmacol. 1999 Jul;56(1):154-61. DOI: 10.1124/mol.56.1.154 PMID: 10385696.

Starke K. Presynaptic autoreceptors in the third decade: focus on alpha2-adrenoceptors. J Neurochem. 2001 Aug;78(4):685-93. DOI: 10.1046/j.1471-4159.2001.00484.x PMID: 11520889.

Kubista H, Boehm S. Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol Ther. 2006 Oct;112(1):213-42. DOI: 10.1016/j.pharmthera.2006.04.005 Epub 2006 May 30. PMID: 16730801.

Horie K, Obika K, Foglar R, Tsujimoto G. Selectivity of the imidazoline alpha-adrenoceptor agonists (oxymetazoline and cirazoline) for human cloned alpha 1-adrenoceptor subtypes. Br J Pharmacol. 1995 Sep;116(1):1611-8. DOI: 10.1111/j.1476-5381.1995.tb16381.x PMID: 8564227; PMCID: PMC1908909.

Akerlund A, Arfors KE, Bende M, Intaglietta M. Effect of oxymetazoline on nasal and sinus mucosal blood flow in the rabbit as measured with laser-Doppler flowmetry. Ann Otol Rhinol Laryngol. 1993 Feb;102(2):123-6. DOI: 10.1177/000348949310200209 PMID: 8427497.

Bende M, Hansell P, Intaglietta M, Arfors KE. Effect of oxymetazoline nose drops on vascular permeability of the nasal mucosa in the rabbit after provocation with leukotriene B4. ORL J Otorhinolaryngol Relat Spec. 1992;54(5):270-4. DOI: 10.1159/000276313 PMID: 1336840.

Kharitonov SA, Yates D, Barnes PJ. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J. 1995 Feb;8(2):295-7. DOI: 10.1183/09031936.95.08020295 PMID: 7538934.

Garrelds IM, van Amsterdam JG, de Graaf-in’t Veld C, Gerth van Wijk R, Zijlstra FJ. Nitric oxide metabolites in nasal lavage fluid of patients with house dust mite allergy. Thorax. 1995 Mar;50(3):275-9. DOI: 10.1136/thx.50.3.275 PMID: 7660342; PMCID: PMC1021192.

Ramis I, Lorente J, Roselló-Catafau J, Quesada P, Gelpí E, Bulbena O. Differential activity of nitric oxide synthase in human nasal mucosa and polyps. Eur Respir J. 1996 Feb;9(2):202-6. DOI: 10.1183/09031936.96.09020202 PMID: 8777951.

Rinder J, Lundberg JM. Nasal vasoconstriction and decongestant effects of nitric oxide synthase inhibition in the pig. Acta Physiol Scand. 1996 Jun;157(2):233-44. DOI: 10.1046/j.1365-201X.1996.509246000.x PMID: 8800364.

Imada M, Iwamoto J, Nonaka S, Kobayashi Y, Unno T. Measurement of nitric oxide in human nasal airway. Eur Respir J. 1996 Mar;9(3):556-9. DOI: 10.1183/09031936.96.09030556 PMID: 8730019.

Westerveld GJ, Scheeren RA, Dekker I, Griffioen DH, Voss HP, Bast A. Anti-oxidant actions of oxymethazoline and xylomethazoline. Eur J Pharmacol. 1995 Sep 15;291(1):27-31. DOI: 10.1016/0922-4106(95)90185-x PMID: 8549644.

Westerveld GJ, Voss HP, van der Hee RM, de Haan-Koelewijn GJ, den Hartog GJ, Scheeren RA, Bast A. Inhibition of nitric oxide synthase by nasal decongestants. Eur Respir J. 2000 Sep;16(3):437-44. DOI: 10.1034/j.1399-3003.2000.016003437.x PMID: 11028657.

Beck-Speier I, Dayal N, Karg E, Maier KL, Schumann G, Semmler M, Koelsch SM. Oxymetazoline inhibits proinflammatory reactions: Effect on arachidonic acid-derived metabolites. J Pharmacol Exp Ther. 2006 Feb;316(2):843-51. DOI: 10.1124/jpet.105.093278 Epub 2005 Oct 12. PMID: 16221739.

Schoeffter P, Hoyer D. Interaction of the alpha-adrenoceptor agonist oxymetazoline with serotonin 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors. Eur J Pharmacol. 1991 Apr 17;196(2):213-6. DOI: 10.1016/0014-2999(91)90432-p PMID: 1678720.

Wang HW, Wu CC. Effects of oxymetazoline on isolated rat’s tracheal smooth muscle. Eur Arch Otorhinolaryngol. 2008 Jun;265(6):695-8. DOI: 10.1007/s00405-007-0509-4 PMID: 17978828.

Zádori ZS, Shujaa N, Fülöp K, Dunkel P, Gyires K. Pre- and postsynaptic mechanisms in the clonidine- and oxymetazoline-induced inhibition of gastric motility in the rat. Neurochem Int. 2007 Oct;51(5):297- 305. DOI: 10.1016/j.neuint.2007.06.027 Epub 2007 Jun 30. PMID: 17664022.